
PARTNER RESOURCE

DevOps for Digital
Transformation
How DevOps can transform IT and business

Whats Inside.

03 Chapter 1

Introduction

04 Chapter 2

Getting to know DevOps and SRE

06 Chapter 3

Fundamentals of DevOps

10 Chapter 4

DevOps best practices

15 Chapter 5

Benefi ts of DevOps

19 Chapter 6

Challenges of DevOps

22 Chapter 7

DevOps metrics

04 Chapter 8

DevOps and intelligent observability
enable digital transformation

CHAPTER 1

Introduction.
More and more organizations have adopted DevOps practices to streamline software development, increase
developer productivity, and enhance continuous delivery workfl ows to deliver better software faster.

As DevOps pioneer Patrick Debois noted in 2009, tactics — not just technology solutions — defi ne a successful
approach to DevOps that can fundamentally transform IT. But while this tactical focus off ers increased fl exibility for
teams, it can quickly lead to data and communications silos across the organization which can impair software quality
and speed of delivery. Without help, it can be extremely diffi cult to gain strategic insight into how development teams
perform their day-to-day tasks, how to automate DevOps pipelines, and how to architect software for reliability and
resiliency in modern cloud-native environments.

That help comes in the form of artifi cial intelligence (AI). AIOps, the discipline of applying AI and advanced
analytics to IT operations, has transformed how organizations manage complex systems. Using these same
principles, organizations can take a more intelligent approach to DevOps that leverages AI throughout the software
development life cycle (SDLC). DevOps, together with complementary technologies and tactics, such as site reliability
engineering (SRE), has the potential to transform the business.

To better understand the transformative power of DevOps, we’ll explore the basics of DevOps and the growing role
of SRE; delve into key DevOps benefi ts and challenges; discuss DevOps best practices and key DevOps metrics; and
examine how AI and automation at every stage of the DevOps lifecycle can transform the way organizations develop
and deliver better software faster.

63% 38%

DevOps has potential power to reshape your business
by streamlining your IT to deliver better value

of organizations that use DevOps
practices have improved the
quality of their deployments

of organizations report
improved code quality overall

Getting to know DevOps and SRE.
What is DevOps? Development meets IT Ops

DevOps is a fl exible framework of software development practices organizations use to create and deliver software
by aligning and coordinating software development eff orts — “Dev” — with IT operations — “Ops.”

The easiest way to conceptualize DevOps is as a continuous loop. Instead of discrete processes, development and
operations become part of an ongoing cycle that includes planning, coding, building, testing, releasing, deploying,
operating, and monitoring applications and services.

This continuous workfl ow approach enables teams to immediately identify and address issues related to both form
and function earlier in the process to avoid problems before software is released into production.

The recent development of cloud-native technologies, open-source solutions, and fl exible APIs have further
enhanced DevOps effi ciency. With its roots in Agile development, DevOps is ideally suited to help teams keep pace
with accelerating development and release models, such as continuous integration and continuous delivery (CI/CD).

CHAPTER 2

What is SRE? Software resiliency built in

SRE is a software operations practice that manages
the details and big-picture concerns of software
resiliency to ensure software systems’ availability,
latency, performance, and capacity. Site reliability
engineers understand the needs of software
systems and set up processes and structures to
meet those needs.

Google VP of Engineering, Ben Sloss, coined the
term SRE in 2003 when he and his team began to
apply software engineering principles to software
operations to create more reliable and scalable
software systems. Implementing SRE can help
organizations reduce friction between development
and operations components of DevOps teams —
streamlining effi ciency and reducing error rates.

SRE complements DevOps practices by off ering
increased automation to reduce reliance on manual
tasks. These practices help Dev teams solve their
problems and deliver reliability-by-design earlier in
the development process.

Ultimately, SRE helps organizations achieve their
operational goals, such as reduced downtime or
faster resolutions, by defi ning automating service
level objectives (SLOs).

How do SRE and
DevOps interact?

SRE and DevOps are essentially two sides of
the same coin. While DevOps frameworks focus on
whole-lifecycle collaboration and breaking down
silos, robust SRE helps implement and automate
DevOps practices using SLOs and ensures those
systems—and the software they produce—are
resilient.

According to Andi Grabner, DevOps Activist
at Dynatrace, “DevOps and SRE are a balance
between speed and safety.” While DevOps helps
organizations move from left to right along the
development and operations lifecycle to boost
overall speed, SRE moves right to left to help reduce
failure rates earlier in the development cycle.

While it’s possible to have DevOps without the SRE,
these two processes work best as a pair, eff ectively
creating a continuous cycle that delivers ongoing
improvements across both directions of the CI/CD
pipeline. As a combined practice, companies can
seek to increase automation, speed up delivery,
improve software quality and much more.

With this background information in hand, let’s
now dive into the fundamental components of the
DevOps mindset to get a better idea of where your
team will need to concentrate its eff orts to get the
most out of DevOps practices.

SREs came into practice to increase resiliency of
organizations through automation of many manual tasks
early in development

Fundamentals of DevOps.
DevOps is a cultural shift that requires vision, planning, executive buy-in, and tight collaboration to successfully
establish a more integrated way of developing and delivering applications. By embracing a few fundamental
practices, teams can improve their effi ciency and develop a deeper understanding of their workfl ows, toolsets, and
processes so they can release better software faster.

Because DevOps is a continuum, these practices should also be continuous and ongoing. This chapter covers the
basic tenets or practices that form the fundamentals of adopting a DevOps approach.

Continuous integration

Continuous integration (CI) is a software development practice in which developers regularly commit their code
to a shared repository. Because microservices architecture is distributed, CI allows developers to own discreet,
manageable chunks of code, and individual features and work on them in parallel. The distributed nature of these
applications allows for frequent updates — often multiple times daily. However, developers can’t just push build
updates haphazardly. CI is tightly controlled; new commits trigger the creation of fresh test builds via the build
management system. Redundant code is rejected, and breaking changes are minimized once master branches are
altered. Incremental changes are encouraged. Additionally, reduced reconciliation prevents mandatory code freezes
that commonly stem from confl icts. Overall, continuous integration enables teams to build and test software faster
and more effi ciently. By regularly merging code, teams also always have an up-to-date build that speeds up testing
and bug fi xing, boosts merge confi dence, and helps to shorten the development pipeline.

Continuous delivery

While CI focuses on regular, independent code updates to a central repository, continuous delivery (CD) focuses
on releasing completed code blocks to a repository at regular intervals. These blocks of code should always be in
a deployable state for testing or release to production. CD is often confused with continuous deployment —

CHAPTER 3

the next process in line — which releases fi nalized
code into production. Deployment is the act of
making new and updated software available to
end users. Accordingly, the CD primarily denotes
“continuous delivery,” or both “continuous delivery
and deployment,” but rarely just continuous
deployment. CD takes code and adds it to a
repository, such as GitHub or, in the case of a
microservice-based environment, a container
registry. The end goal is to increase release
consistency by perpetually keeping code in a
deployable state. Software development becomes
more nimble and more predictable as a result.

Continuous testing and validation

Continuous testing in DevOps is important at every
stage of the SDLC. It involves many stakeholders
including the development team, quality assurance,
and operational staff . The goal of continuous testing
is to evaluate the quality of software as it progresses
through each stage of the delivery lifecycle. This not
only stops bad code in its tracks but also provides
fast and continuous feedback to the Development
teams with the information they need to address any
quality concerns.

Whilst continuous testing is important to scale,
manual validation of test results derails the software
delivery process. This is where continuous validation
comes in — automating the evaluation process of
test results against your pre-defi ned service level
objectives. Continuous validation compliments the
implementation of continuous testing by eliminating
any manual analysis required whether it’s comparing
data on dashboards or checking off boxes on a
spreadsheet. Instead, DevOps teams can set up
techniques like quality gates that automatically
enforce predefi ned quality criteria and prevent bad
code from progressing to the next stage.

Continuous
monitoring and
observability

Though organizations strive for airtight CI/
CD processes, there are often opportunities for
improvement. Monitoring and observability are key
to understanding viability of code as it progresses
through the pipeline. While detecting issues and
vulnerabilities is always important, the sheer amount
of observability data associated with modern
multicloud apps creates means there’s simply no
way to manually track everything that’s occurring
across the software stack.

Traditionally, DevOps monitoring was closely
associated with “ops” teams but has since evolved
across the full software development lifecycle
(SDLC) as key stakeholders are increasingly
requiring answers are possible when you have a
system that is continually monitoring and analyzing
observability data. Continual data capture can be
empowering when leveraged intelligently, and this
is where the introduction of observability is critical
to DevOps. Observability is more than just collecting
metrics and arranging them in dashboards. Having
an AI engine that’s working 24/7, 365 days of
the year to analyze data and provide answers to
anomalies and problems helps teams remediate
issues faster and make better release decisions.
This drives better code quality, better application
performance which translates to better end user
experiences. As software complexity increases, it
is becoming harder for DevOps teams to deliver
new features and releases faster without sacrifi cing
quality. Therefore, empowering your teams with
continuous observability and an AI engine to
analyze all the data and provide answers is critical
for success.

Continuous security

Another fundamental DevOps practice is continuous
security based on testing, monitoring, authorization,
and inventory tracking. This is the evolution towards
DevSecOps. Simply put, continuous security is the
process of making security part of the CI/CD process,
covering the full SDLC, by adding an extra layer over
the DevOps process and pipelines to ensure your
infrastructure and applications don’t have vulnerabilities
and risks associated with them. Today, as we see
environments become increasingly more complex, “bolt-
on” approach to security is not scalable or sustainable,
and therefore baking security into your automated
processes to enable the continual testing across your
development life cycle is imperative.

Similar to the shift-left mentality with regards to quality
in testing, security measures should be baked into
planning and creation from day one, and they should
occur constantly throughout the development life
cycle including when software is running in production.
Further, any continuous security measures implemented
should be automated as appropriate, as not to hamper
effi ciency. In terms of culture, security personnel must
be regarded as full partners in the DevOps process, on
par with developers and operations specialists — hence
the shift towards DevSecOps.

DevOps is a cultural shift

This new culture requires the adoption of best
practices such as:

 Continuous Delivery

 Continuous integration

 Continuous testing

 Continuous monitoring/
 observability

 Cross-team collaboration

Cross-team collaboration

Breaking down silos is paramount to ensuring good communication and unifi cation across the DevOps pipeline.
Eff ective DevOps execution means establishing a single source of truth — aggregating data from many sources into
one collective location. Testers, engineers, QA, and even non-technical stakeholders can gain valuable insights from
these bits of information. Under this paradigm, each will contribute in their own way to the creation of software that
drives high-level business outcomes.

Seamless cooperation between developers and ops teams is especially critical. DevOps processes coexist in
a continuous cycle known as a feedback loop. Diff erent portions of a project are completed and reviewed by
stakeholders, and feedback is returned from those steps. Code must be written, tested, validated, delivered, built,
and ultimately deployed for end users.

Cross-team collaboration benefi ts from accelerating this cycle. Accordingly, automation has become a key ingredient
in shortening the cycle from end to end — chiefl y by reducing the friction caused by multiple parties working at the
same time.

Taking DevOps to the next level

While we have established the fundamentals, organizations don’t want to settle for the basics, they want to take
their DevOps to the next level. To keep pace with innovation, and the need to deliver services to market faster,
organizations need to take their DevOps practices to the next level. Evolving these fundamental practices into elite
performing DevOps requires some best practices, which we’ll cover in the next chapter.

DevOps best practices.
Many organizations claim to have a fully functioning DevOps process. But DevOps is more than just a workfl ow
and a few tools your organization can implement and move on. It’s helpful to think of it as a philosophy — a culture
and mindset — that takes continuous optimization, creativity, and fl exibility to maintain. Maybe an organization has
implemented organizational changes and tools that lay the foundation for a good DevOps process, but they may be
missing some of the benefi ts DevOps can off er.

With this journey of improvement in mind, let’s explore some DevOps best practices that can take your investment in
the fundamentals to the next level and ensure you’re making the most of your DevOps strategy.

Automation

Automation is a cornerstone of every company’s DevOps strategy. In short, automation reduces toil, helps you
accelerate your delivery pipelines across the full SDLC, and enables you to scale your DevOps practice.

Traditionally, processes such as testing, monitoring, error discovery and remediation comprised a little automation
and a lot of manual intervention. This worked when small teams worked on monolithic applications. But with modern
microservices-based applications and with digital transformation putting even more pressure on IT, automation is
crucial to increase velocity and quality by driving consistent processes across every stage of the DevOps lifecycle.
As a result, you can push code to production more frequently and produce consistent, reliable, and secure software
whilst saving your DevOps team valuable time they can spend innovating.

Monitoring and observability

Monitoring and observability are essential to incorporate across every stage of the software development lifecycle,
from pre-production to production. Whilst automating as many processes as possible increases the effi ciency of
your DevOps workfl ows, monitoring and observability provide your teams with visibility into those automated

CHAPTER 4

processes to detect and pinpoint the root causes of
any problems or bottlenecks.

Many Tools provide data and dashboards to track
the health of individual systems. But to develop
an eff ective observability strategy that yields
actionable answers about systems throughout the
DevOps toolchain, you need more than just data on
dashboards - you need an intelligent approach.

1. Make your systems observable — adopt a
standard, such as OpenTelemetry. Leverage
an AI-based observability platform that can
automatically instrument and detect anomalies,
so you don’t have to do it manually.

2. Establish end-to-end observability from pre-
production to production for every application or
environment.

3. Ensure you can understand the business
impact of an event or transaction by analyzing
it in context of the processes upstream and
downstream from it.

4. Leverage AI to automatically detect issues and
provide analysis to immediately pinpoint root
causes and trigger auto-remediation.

This is an important practice to implement so your
team can identify failures or performance problems
before any impact is felt by your customer.

AIOps

Data can be an IT team’s best friend, especially
when it comes to testing and delivering code and
monitoring services more effi ciently. However,
processing the massive amount of data created by
today’s applications is beyond the ability of humans
alone. This paves way for an AI engine that can
constantly analyze all the observable data down to

the code-level detail, and
that gives the development team
the power to identify issues, get answers,
and quickly remediate problems when they
happen.

Harnessing AI as part of your DevOps processes
enables you to enhance functionality and
automation in development, testing, security,
delivery, and release cycles as well as constantly
monitoring the performance of deployed software
far more effi ciently than using manual eff orts.

Shift-left quality

SREs live and breathe service level objectives
(SLOs). Ensuring production service levels are on
track requires continuous evaluation of service level
indicators (SLIs) against SLOs. But that begs the
question: why shouldn’t developers ensure the code
they build meets the same production SLOs. This
concept of shifting left improves software quality,
helps detect issues much earlier in the lifecycle, and
prevents code that doesn’t meet production SLOs
from progressing to the next stage. The results are
fewer SLO violations in production, time and money
saved due to fewer or no war rooms, but more
importantly, ensuring 100% of business service level
agreements (SLAs) are met.

One way to automate this shift-left process
is through quality gates, which allow you to
automatically compare SLIs from any pipeline tool
(such as monitoring and testing) against pre-defi ned
SLOs. If code does not pass the SLO-based quality
gate, it cannot progress to the next stage, and the
system automatically notifi es the development team
to remediate the problem.

Shift-right reliability

Progressive delivery (also referred to as shift-right)
focuses on expanding overall CI/CD practices to
help deliver applications and services with more
control. It allows organizations to precisely manage
how and when new features, updates, and fi xes
are delivered to minimize the potential negative
impact to the user base. Some common practices
include blue-green deployments, A/B testing, canary
deployments, and feature fl ags.

This application release model gradually
transitions users from a current version of an
application or service (the “blue” version) to a
new release (the “green” version”) while both
blue and green are running in production. This
change should feel seamless to the user, and
blue can stand by in case an unforeseen prob-
lem with green requires rollback to the earlier,
more stable version.

Also known as split testing, A/B testing refers to
randomized experimentation processes where
two or more versions of some variable — for
example, a service, webpage, or page element
— are shown to diff erent end-users. From there,
you can monitor app performance as well as
user behavior and satisfaction to determine
which option is best for business goals.

Also known as toggles, feature fl ags are a
development practice that allows software and
development teams to enable and disable parts
of a codebase with a simple switch (or fl ag).
Feature fl ags help organizations decouple code

All deployments in production carry risk even
with comprehensive monitoring and testing.
One method for developers to mitigate serious
disruption is through canary deployment. The
term originates from when canaries were used
to detect toxic gasses within coal mines. If the
canary died, miners would know to get out
before the gas reached them. A canary deploy-
ment is a release of software that’s deployed to
a small percentage — referred to as the canary
— of the whole userbase. If things run well in
your canary, you can then deploy the release to
the rest of the userbase. If things don’t run well,
at least the impact is much smaller, less disrup-
tive, and you can provide the ability to test actu-
al users, who can provide real feedback, while
reducing risk by mitigating impact if problems
lead to a better-quality product.

• Blue-green deployments

• A/B testing

• Feature fl ags

• Canary deployments

deployments from feature
releases, allowing them to
make code changes in production that
remain hidden from the users until they are
activated. This results in increased deployment
speeds, improved system stability and better
cross-team collaboration.

Shift-left and shift-right security

The concepts of shift-left and shift-right also apply to
security. First let’s talk about shift-left.

Ever since DevOps teams started using containers
as a way to package applications and started
releasing software at a faster cadence, there has
been a desire to automate application security
tests and provide test results earlier in the software
development lifecycle. By providing test results
earlier, software developers can fi x security fl aws
faster and easier. They don’t have to remember
a change they made weeks ago that accidentally
introduced a security vulnerability, and unravel
everything that has been done since then.

In addition to information being provided earlier,
automated release decisions can be done earlier,
based on the security test results. This has been the
holy grail for DevOps — providing more automation
and less manual work. The result is better, higher-
performing, and more secure software — with less
work needed by human beings.

How about shift-right security? That’s important
too. After several years of “shifting left”, enterprises
are realizing they also need to maintain visibility
in the production environment. We’ve seen many
successful attacks against Kubernetes environments
— from the malicious images that were inserted into
Docker hub in 2020, to the attacks against Azure
and Tesla by “cryptojackers”. This is why 44% of
enterprises say they are planning to adopt new
runtime security controls (shift-right) over the next
12-24 months.

In a nutshell, here are the
reasons why automated security
(DevSecOps) can and should shift right
into production environments:

• The production environment is connected to the
internet, which is where most attacks happen.

• Scanning source code in the development
environment can’t give you the same rich
insights you can get by observing an application
when it is running in production. For example,
static source code scans can’t show you what
libraries are actually loaded, how they are used,
whether a process is exposed to the internet,
or whether a process interacts with sensitive
corporate data.

• Some applications running in production, such
as those you purchase from third parties, may
not have run through your dev environment,
so they never had a chance to be scanned by
security tools in development.

• New zero-day vulnerabilities are often
discovered after an app has deployed into
production. By implementing continuous
application security monitoring in production,
you can be aware of these risks.

Building resiliency with chaos
engineering

Chaos engineering is a development discipline
that subjects software to failures in a simulated
production environment as a way to build resilience
into distributed production software systems. This
practice builds confi dence in software’s ability to
withstand unexpected or unlikely circumstances,
such as outages, slowdowns, excessive loads, and
so on.

Testing the performance of your application under
random and extreme circumstances is a helpful
exercise to ensure your team delivers durable,
reliable, and highly available systems in any given
situation. The only way of doing this is in production
environments with real users and actual load levels.

Adopting a platform approach for your
DevOps value stream

There is no shortage of DevOps tools IT teams
can use today to execute diff erent parts of the
DevOps lifecycle. But as your DevOps approach
matures and you look to scale DevOps across
multiple applications, toolchain sprawl becomes
manual, cumbersome, costly, and reverts to a siloed
approach. Imagine having multiple teams trying to
use the same tools each for their own applications.

Standardizing on a platform approach that provides
automation, intelligence, and observability on top
of the regular DevOps processes helps reduce
overhead, reduce toil, and improve effi ciency. An
all-in-one platform approach creates a single source
of truth that tears down silos, integrates toolchains,
and enables self-service models. This approach

helps automate the entire
development pipeline and gives
developers and operations teams the right
tools and data for every stage of the DevOps
cycle — from coding to delivery and back again.

Driving futuristic development today

The goal of any business and technology leader
is to make the development of apps and services
easier. These emerging best practices include
effi cient ways to develop critical applications,
code, and services. Further, by leveraging these
emerging tools, you can deliver a more proactive
and prescriptive development architecture capable
of meeting today’s digital demands.

The fundamentals of DevOps
are a set of processes and
technologies that empower
automation, monitoring and
observability, and AIOps.
These processes lead to
a shift-left and shift-right
mindset that result in
continuous delivery of quality
and resilient releases.

Benefi ts of DevOps.
As teams embrace shifts in both culture and processes, DevOps’ holistic approach to software and infrastructure
creation can pay dividends, even at the organizational level. Once teams have established some best practices and
key metrics to monitor and manage, teams can expect to see some core benefi ts.

Increases speed of delivery

As companies digitally transform, the pressure is fi rmly on development teams to build and deliver software faster
and more often without sacrifi cing quality. When surveyed, 63% of the DevOps practitioners report that DevOps
enables them to release software more frequently. In contrast, development takes 41% more time in organizations
that don’t use DevOps practices. That time could be better spent creating new features or implementing new
processes. The diff erence? DevOps encourages teams to develop code in smaller chunks and democratize access
to code, which means developers are working on smaller, more frequent releases and with tighter feedback loops to
quickly iterate and release software faster.

DevOps processes break down silos and foster better collaboration and feedback loops between teams. This cross-
functional connection and coordination reduces delivery lead times by enabling teams to automate processes such
as monitoring, test evaluation, and remediation that used to be done manually. Through this automation, teams can
develop self-service models to accelerate delivery pipelines and scale DevOps processes across the organization.

Increased frequency of releases

A central philosophy of DevOps is to focus on smaller coding changes — opting for agility and quick feature
pushes, as opposed to maintaining huge code bases and making infrequent monolithic releases. These smaller
changes are easier to commit to code repositories such as GitHub or BitBucket, and easier to test.

CHAPTER 5

More frequent releases mean users can access new
features and functions more quickly. They also mean
developers get real-world feedback more quickly,
which means they can respond to issues and make
optimizations more rapidly.

Frequent releases also promote continual
improvements to DevOps processes and workfl ows.
Some companies, such as Google, rank their teams
based on their release performance which foster
a never-settle attitude and emphasizes speedy
response times.

Reduced risk and increased release
confidence via higher quality software

Another central tenet of DevOps is frequent,
automated testing at every stage of development
lifecycle, which reveals issues well before it hits
production. Through practices like shift left, where
code is evaluated against production SLOs,
development teams fi nd that bad code automatically
gets stopped from progressing to the next stage
thereby helping improve the overall quality of
software and reducing failure and defect rates.

The results of continual testing are impressive:

63% of organizations that
use DevOps practices have
improved the quality of their deployments,
while 38% report improved code quality overall.
Teams also spend 21% less time extinguishing fi res,
which leaves more time to innovate and improve
processes.

Reduced risk translates to increased release
confi dence. When more tests and processes,
including release decisions, are reliably automated
using SLO-driven quality gates, teams can release
software knowing it is well tested and meets users’
needs.

Developer empowerment

The planning, automation, and frequent testing that
accompany DevOps practices provide developers
with a rapid feedback loop that can increase
their confi dence and empower them to work
independently.

By automating tedious tasks and routine approvals
wherever possible, teams can maximize their
effi ciency and work confi dently knowing they

The benefi ts of DevOps
DevOps practices are an investment whose dividends increase

with time and experience. Some of these benefi ts include:

Increased speed of
delivery from improved

processes

Higher quality
software releases from

better testing

Improved productivity
and collaboration from

empowered developers

Better business
outcomes from

happier customers

are following pre-approved workfl ows. These
processes enable a culture of group ownership and
accountability to develop within teams. When issues
do arise, the DevOps culture refrains from assigning
blame for mistakes. Instead, the focus is on process
improvement, lessons learned, and growth. This
culture can boost morale and contribute to better
software development.

DevOps, and by extension, DevSecOps, strengthens
ties between developers, IT, operations, and security
professionals across an organization, as employees
from each discipline have more awareness of
each contribution. With a strong DevOps initiative,
transparency, and visibility are the natural state of a
project. Metrics gathering and an all-hands-on-deck
approach keep everyone in the know. Centralized
DevOps tools and orchestration platforms empower
teams with shared information and resources.

Increased security

Since its introduction, DevOps has extended
beyond Dev and Ops teams to now include
Security teams — referred to as DevSecOps.
This methodology seamlessly integrates security
testing and protection throughout the software
development and deployment lifecycle. Much like
DevOps, DevSecOps is about taking a collaborative
approach, and it’s important for organizations to
adopt as the speed of DevOps can often lead to
applications in the development cycle left vulnerable
to security attacks.

Adopting DevSecOps enables your organization
to maintain a collaborative approach through
development whilst still ensuring security is not
compromised. Security assessments cannot wait
until after the development cycle, instead they must

happen concurrently. In
doing so, DevSecOps teams can
detect and respond to software fl aws in
production quicker and more effi ciently. This
results in faster software development, innovation,
and delivery.

Reduced mean time resolution (MTTR)

Complex, multi-faceted systems inevitably
experience failures, and teams must prepare
accordingly. Reduced MTTR is a measurement
of how long it takes to fi x these failures (typically
in hours or days). You might also envision this
as average downtime across a crop of failures.
Naturally, teams highly invested in DevOps
principles have lower MTTR. This is an accurate
measure of both adherence to best practices
and the overall collective skills. In many cases,
reducing MTTR is simply a function of how quickly
teams can pinpoint and identify issues. To quickly
identify issues with precision, teams must have
fully observability over their infrastructure in a
DevOps environment. Reducing MTTR also relies
on monitoring, precision analysis, and formulating
remediation plans. Teams will also spend less time
on support calls — not only because code is higher
quality, but because teams can identify root causes
more quickly.

Increases software reliability and
resiliency

The DevOps practices of managing smaller code
blocks, testing continuously, and automating
processes also encourage teams to build reliability
and resiliency into software from the beginning.
When software is designed with reliability and
resiliency in mind, it’s much easier to roll code
back as needed — or even remove live code from
production when issues arise without breaking other
features.

Since applications are collections of individual core
functions (especially in the age of cloud platforms
and microservices), it’s easier to disable or remove
faulty features without impacting the entire package.
DevOps teams can then resolve issues and re-
release services when ready, maintaining system
reliability. Several tools make this possible in one or
two clicks. Furthermore, the data captured during
software operation allows teams to design better
tests and prevent future problems.

Happier customers

DevOps encourages and enables teams to be
more responsive to feedback. Processes such as
rollbacks aren’t regulated to just bug fi xes — they’re
also useful for removing features that are ill-received
and improving upon them by creating another agile
method to meet user demands. End-users are also
more prone to view software as “innovative” or
“capable” when feature delivery is continuous and
seamless.

Better business
outcomes

We often talk about the benefi ts DevOps
brings to the developer and operations teams
directly, but the benefi ts of DevOps also extend
to the scope of the entire business right up to the
C-level. And Patrick Debois, known as the creator
of the DevOps movement, notes the greatest
advantage of DevOps is the understanding it gives.

DevOps allows a business to be more versatile
and information-driven to meet the customer and
business needs. The benefi ts adopting a DevOps
approach yield, in turn, lead to increased effi ciency,
work ethic, and ultimately higher profi t which can be
put back into the business for future growth.

Proving the progress

The dividends of DevOps practices are a benefi t
that increase with time and experience. Establishing
a DevOps practice is an investment that also comes
with its challenges.

Challenges of DevOps.
While the benefi ts of DevOps are clear, establishing the tools, processes, and culture changes required to achieve
a successful DevOps practice can be challenging. By working together, development, IT, and operations teams can
eliminate roadblocks and focus on improving how they create, deploy, and continuously monitor software.

Although working together is a vital component, it is not the only ingredient for success. Making the transition to
DevOps requires planning and preparation. Here are some pitfalls to avoid as organizations plan and implement
DevOps practices.

No buy-in from the top

For a modern organization to realize its business goals, leadership needs to trust its technical staff and develop an
understanding of IT’s goals and pain points.

Because DevOps integrates disciplines across the development and operations life cycle, from product design to
customer support calls, strong DevOps can’t happen unless organizations get buy-in from the decision-makers who
head up the organization or the departments involved. The very leanest organizations may even need buy-in form
all the way up the chain — the CEO. Others may only need a champion in the upper management tier. Either way, the
senior management that calls the shots on purchasing and product strategy needs to understand what it takes for IT
and DevOps teams to work together to improve how the organization delivers its goods and services to customers
and promote the cultural changes required to make cross-organizational DevOps successful.

Not having an observability strategy

Observability is not the same as monitoring. In a monitoring scenario, preconfi gured dashboards are meant to
alert teams to the performance issues they expect to see later on. However, these dashboards rely on a key
assumption: that teams can predict what kinds of problems they will encounter before they occur.

CHAPTER 6

Observability is based on the outputs of a system
and enables teams to understand exactly what is
slow or broken. With adequate observability into
cloud-native apps and platforms, development
teams can leverage telemetry data to get more
insights into apps and systems, automate more
processes, and release higher quality code faster.
Gaining end-to-end observability into a software
environment requires a combination of careful
consideration and powerful technology and is a
critical part of ensuring DevOps scalability and
success.

Not automating ALL manual processes

A central goal of DevOps is to automate as many
processes and decision points as possible to
improve throughput and software quality. Here,
teams should automate testing, but also workfl ows,
such as advancing software from test to release or
committing code to a repository.

Teams may also rely too heavily on tribal knowledge
that lives in the heads of a few, requiring manual
approvals that create bottlenecks to automation.

As the number and type of technologies DevOps
environments encompass constantly grow and

fl uctuate, auto-scaling based
on demand becomes imperative.
Automating certain types of responses,
such as alerting or auto-correcting performance
issues, is another key capability.

Not bringing AIOps to DevOps

AI can be thought of as a three-legged stool, along
with observability and automation. Intelligent
decision making with causation-based AI helps
development teams understand the root cause and
pinpoint precisely where errors are occurring and
what caused an application failure.

But AI isn’t just for reactive measures, AI helps
predict potential SLO violations or application
failures before they even hit production, allowing
teams to quickly remediate and address any issues
before it impacts users. Leveraging AI across the
pipeline helps IT scale their DevOps to include
thousands of apps and microservices to analyze
millions and billions of dependencies.

Not adopting a self-service approach

A major part of IT transformation is the ability to give
technologies the tools they require to be successful
on a daily basis. Within application and services

The challenges of DevOps
DevOps faces many challenges without proper strategy and

discipline within your organization. These may include:

No leadership
buy-in

Poor observability
strategy

Manual processes Not identifying/
obtaining the right

metrics

Security
vulnerabilities

development, it’s important to look at self-service
as a way to reduce wait times, deploy new features,
shorten feedback loops between diff erent teams,
align tooling, and improve CI/CD pipelines. Self-
service is too often ignored until the end of a
transformation eff ort or left off the table entirely. To
unify DevOps teams, organizations should build a
plan for self-service into the strategy. Establishing
automation and observability in your DevOps
strategy makes creating self-service models and
scaling DevOps simple.

Not thinking about security when
designing processes

Many organizations treat security as a separate
expertise that’s applied after code is developed.
But any DevOps initiative should have a plan for
integrating security as tightly as possible. Ideally,
the security team should be a full partner in the
software development and operations. This is
the meaning of DevSecOps. By shifting security
left and baking it into the product at every stage
of the development and delivery process, teams
make apps and services more resilient against a
greater number of threats now and in the future.
DevSecOps grants visibility into code vulnerability,
dependency mapping, secure SDLC reviews, a
deep understanding of how a target tolerates a
real attack, and just how far an attacker can go.
Failing to include security in DevOps — or at least to
create a roadmap to its inclusion in the future — is a
critical misstep that will sacrifi ce countless important
insights throughout the life of the product.

Not measuring the
right metrics

If teams are scouring through error logs or
reactively trying to piece together an issue, they
may not be looking at the right metrics. Identifying
what organizations need to measure is key for
achieving valuable insights from the data systems
produce.

Although there are certain benchmarks all
organizations should watch, such as throughput
and latency, average response times, queue time,
errors, and impacts on memory, each organization
will have metrics for systems and processes that
are unique. Start with a set of key metrics that
evaluate code quality and testing eff ectiveness, as
well as workfl ow effi ciency and incident response
times. To ensure management buy-in, teams should
understand key pain points that are of concern to
the wider organization. Because DevOps tools and
processes touch such a wide digital footprint, they
aff ord organizations an opportunity to discover,
measure, and improve key trends across the
organization.

A team effort

Aligning teams from diff erent disciplines is never
an easy task. However, leaders in the technology
space see the line blurring between IT, operations,
and development as teams depend on each other
to ensure business success. In a healthy ecosystem
where IT and development operations are working
together to achieve a common goal, organizations
can drive true IT transformation eff orts with full
support for DevOps staff and initiatives.

DevOps Metrics.
At the heart of all successful DevOps and SRE practices are metrics. Telemetry from every stage of the DevOps
workfl ow — from development and testing to deployment and operations — provides critical clues about how your
software is performing and how effi cient and eff ective your DevOps processes are.

Reliable, measurable data is required to automate testing, commits, and releases. To establish best practices,
organizations can start with the project Google’s DevOps Research and Assessment (DORA) team established,
known as “The Four Keys”, which defi nes the four basic metrics that indicate the performance of a DevOps team. So
what are DORA’s four keys, and what other key metrics can organizations track to improve their DevOps and SRE
practices?

Deployment frequency

Deployment frequency measures how often an organization successfully releases to production.

DevOps and continuous integration/continuous delivery (CI/CD) go hand in hand. Teams now work with smaller code
blocks, and continuous testing and validation allows for more rapid commits. This development pace means teams
can release more frequently, often multiple releases per day.

A high deployment frequency is critical for answering customer demand. The faster organizations can deliver bug
fi xes, improvements, and new features, the faster developers can receive valuable real-world feedback and users
can realize value that bolsters your brand.

Deployment frequency is both a long-term and short-term metric. For example, you could measure how many
code commits you’re pushing daily or weekly in response to process changes — perhaps as a gauge of effi ciency.
Over longer periods, teams can track whether their deployment numbers are increasing over time. Slow-release
schedules may indicate bottlenecks or service delays that need attention.

CHAPTER 7

Lead time for changes

Lead time measures the amount of time it takes for
committed code to get into production.

Lead time comes into play when responding to
specifi c application-related issues and indicates how
quickly your team can remediate a bug or a tooling
glitch. Like development frequency, lead time for
changes helps teams understand how eff ective their
processes are.

Lead time is easy to average and quantify, making it
a metric accessible to all application stakeholders.
However, lead time isn’t 100% black and white.
While longer lead times could indicate issues,
they may also be the result of a team’s focus on
complex projects. These eff orts will naturally take
more time. It’s important to investigate the context
behind lead-time numbers and evaluate accordingly.
While average organizations might have lead times
ranging from one week to a month, some DevOps
squads can push out production changes in under
24 hours.

Two important ways to improve lead time for
changes is to implement quality assurance testing
throughout multiple development environments and
to automate testing and DevOps processes.

Change failure rate

Change failure rate measures the
percentage of deployments that result in a
failure in production that requires a bug fi x or roll-
back.

Teams can commit and deploy changes with high
deployment frequency and lead-time-for-changes
rates, but those eff orts are diminished if problems
sneak into production. A high change failure rate
(above 40%) can indicate poor testing procedures,
and requires teams to make frequent small changes,
which erodes effi ciency.

The goal behind measuring change failure rate is
to evolve into a fully automated DevOps process.
By automating testing and processes, released
software is more consistent and reliable, and more
likely to be successful in production.

Calculating change failure rate requires the ability
to count deployments and link them to notable
incidents. An automated AIOps solution can fi nd
these incidents in GitHub or other code repository
reports, and monitoring system alerts and user
tickets. Since all organization’s processes and
systems are unique, exactly how to measure change
failure rate can vary widely.

Four key metrics
DevOps is data driven and its success depends on reliable metric.

According to DORA, these include (but are not limited to):

Deployment frequency Lead time for changes Change failure rate Mean time to
resolution (MTTR)

Mean time to resolution (MTTR)

Mean time to resolution measures how long it
takes an organization to recover from a failure in
production.

Users depend on feature availability, and 99.99+%
uptime is the coveted goal. Time to resolution
is essential for making sure teams recover from
unplanned outages or service impairments
immediately and as effi ciently as possible — lest
organizations trigger user frustration and lost
revenue.

To determine MTTR, you can assess the time
between when an incident occurred versus the time
when it was resolved. What deployment resolved
this incident? Observability into deployment data
and user experience data is key to knowing whether
service has been restored eff ectively. Extended
restoration times can point to poor alerting or poor
monitoring and can result in a larger number of
aff ected systems.

A best practice to achieve quick MTTR is to deploy
software in small increments to reduce risk and
deploy automated monitoring solutions to preempt
failure. MTTR is another metric that varies widely
between systems.

Beyond DORA: Additional important
metrics to track

While DORA’s four keys are an essential foundation,
there are a myriad of metrics you can use to
track the eff ectiveness of your DevOps and SRE
processes. Here are fi ve more metrics you can track
to holistically assess your pipeline’s eff ectiveness.

1. Defect escape rate

2. Mean time to detection (MTTD)

Also known as defect escape rate
velocity, this metric measures the rate of
issues that “escape” detection during devel-
opment and are discovered in production. You
can then calculate the defect rate per period
of time, per release, or per deployment. Higher
escape rates can point to testing issues and
associated automation shortcomings. It’s fully
possible that tools are faulty when defects
propagate.

MTTD measures how quickly teams discover
issues on average. Broad system failures, vul-
nerabilities, and outrages can wreak havoc on
applications the longer they persist. Identifying
and resolving these issues is paramount to re-
ducing the overall impact of a problem across
your applications, infrastructure, and users.

Eff ective monitoring is a central tenet of
DevOps. Achieving a low MTTD requires teams
to implement eff ective monitoring, alerting,
and end-to-end observability to immediately
detect an anomaly or service degradation. The
source of an issue may be obvious, such as a
central service outage, but it can also be more
diffi cult to detect, such as a back-end failure, a
problem with an open-source tool, or a faulty
code snippet. Detecting issues like these
requires full-stack monitoring with code-level
visibility.

3. Percentage of code covered by

 automated testing

4. Application availability

5. Application usage and

 traffi c

DevOps is data driven

Wherever you are in your journey to DevOps ma-
turity, the ability to measure and make sense of the
data coming from every stage of your workfl ow will
help you perfect your strategies. In every area, from
application performance, reliability, and stability to
DevOps eff ectiveness and effi ciency, metrics are the
lens into your DevOps practices to help you drive
continual improvement. Leveraging an observability
solution that delivers high-fi delity data and analytics
you can rely on to fuel these metrics enables teams
to increase responsiveness, fi ne-tune processes,
and deliver better software faster.

Another central goal of DevOps is to automate
wherever possible. Accordingly, automated test-
ing is integral to catching more errors with syntax,
security, and compatibility within builds.

To accomplish this, organizations can implement
testing environments that automatically simulate
how code behaves under various circumstanc-
es. Boosting the overall percentage of code that
goes through automated testing and validation
makes testing quicker and easier, which speeds
up the DevOps pipeline, and shortens the feed-
back loop from issue detection to resolution.

Application availability is a measure used to
evaluate the extent to which an application is fully
functioning and available to meet the business
and end user’s requirements. A highly available
system is designed to meet the gold standard KPI
of fi ve 9s (99.999%). Ensuring greater application
availability keeps customers engaged and con-
nected to your services.

While downtime isn’t always expected, it’s often
planned as a result of maintenance. Communica-
tion between DevOps and SRE team members
is crucial to resolving unforeseen failures and
ensuring both the frontend and backend operate
seamlessly.

Application usage and traffi c monitors the
number of users accessing your system and
informs many other metrics, including system
uptime. Usage statistics are useful for teams, as
it’s not uncommon for application updates to im-
pact user activity — good or bad. This can occur
when issues arise, or when long-awaited fea-
tures fi nally drop, causing traffi c to spike. Having
these metrics enables DevOps team members to
react and manage these spikes eff ectively.

On the other end of the spectrum, when user
activity slows to a crawl, this could suggest a ser-
vice is interrupted in some form. Although sud-
den changes are much more telling for teams,
it’s also important to assess long-term trends for
problems that develop over time.

DevOps and intelligent
observability enable digital
transformation.
Digital transformation is now critical for enterprises to achieve business goals. By creating a continuously reinforcing
feedback loop, DevOps off ers a way for organizations to evolve corporate culture and empower the next generation
of software creation, management, and security.

DevOps combines development and operations into a unifi ed framework that breaks down silos and fosters
whole-lifecycle collaboration. In this environment, SREs can implement operations that ensure software systems’
availability, latency, performance, and resiliency. Likewise, CI/CD practices can provide well-aligned and automated
development, testing, delivery, and deployment.

Effi cient and eff ective DevOps practices also depend on monitoring key metrics, such as the DORA Four Keys that
measure deployment frequency, lead time for changes, change failure rate, application availability, and mean time to
restore service (MTTR), among others. With DevOps groundwork laid, organizations can develop best practices, such
as automation, monitoring and observability, and AIOps, that empower continuous software delivery at scale.

DevOps doesn’t just improve workfl ows — it also delivers measurable, end-to-end benefi ts, including increased
speed of delivery, increased release frequency, reduced risk, and reduced MTTR.

To facilitate smooth DevOps, SRE, and CI/CD practices, Dynatrace’s AI-powered Software Intelligence Platform
seamlessly integrates with an organization’s DevOps toolchain and automates tasks throughout the DevOps lifecycle.
With continuous automation and precise root-cause determination.

Dynatrace makes it possible for organizations to fulfi ll the potential of DevOps and simplify cloud complexity. By
allowing faster innovation, more effi cient collaboration, and the capability to integrate application security as part of
emerging DevSecOps solutions, Dynatrace delivers precise answers for every phase of the software development
and delivery lifecycle.

CHAPTER 8

LET’S TALK

Ready to
fi nd fl ow?

Windward helps companies create an IT operations strategy that connects

your vision to a roadmap for success. If you’d like to learn more and discuss a

strategic IT Ops plan for your organization, feel free to email us at
info@windward.com or go to www.windward.com.

